arXiv Analytics

Sign in

arXiv:2406.06680 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Hofstadter spectrum of Chern bands in twisted transition metal dichalcogenides

Kryštof Kolář, Kang Yang, Felix von Oppen, Christophe Mora

Published 2024-06-10Version 1

We study the topological bands in twisted bilayer transition metal dichalcogenides in an external magnetic field. We first focus on a paradigmatic model of WSe$_2$, which can be described in an adiabatic approximation as particles moving in a periodic potential and an emergent periodic magnetic field with nonzero average. We understand the magnetic-field dependent spectra of WSe$_2$ based on the point net zero flux, at which the external field cancels the average emergent field. At this point, the band structure interpolates between the tightly-bound and nearly-free (weak periodic potential) paradigms as the twist angle increases. For small twist angles, the energy levels in a magnetic field mirror the Hofstadter butterfly of the Haldane model. For larger twist angles, the isolated Chern band at zero flux evolves from nearly-free bands at the point of net zero flux. We also apply our framework to a realistic model of twisted bilayer MoTe$_2$, which has recently been suggested to feature higher Landau level analogs. We show that at negative unit flux per unit cell, the bands exhibit remarkable similarity to a backfolded parabolic dispersion, even though the adiabatic approximation is inapplicable. This backfolded parabolic dispersion naturally explains the similarity of the Chern bands at zero applied flux to the two lowest Landau levels, offering a simple picture supporting the emergence of non-Abelian states in twisted bilayer MoTe$_2$. We propose the study of magnetic field dependent band structures as a versatile method to investigate the nature of topological bands and identify Landau level analogs.

Related articles: Most relevant | Search more
arXiv:cond-mat/9611210 (Published 1996-11-26)
Quantum interference from sums over closed paths for electrons on a three-dimensional lattice in a magnetic field: total energy, magnetic moment, and orbital susceptibility
arXiv:1102.3580 [cond-mat.mes-hall] (Published 2011-02-17)
Conductance of bilayer graphene in the presence of a magnetic field: Effects of disorder
arXiv:2303.14794 [cond-mat.mes-hall] (Published 2023-03-26)
Anomalous open orbits in Hofstadter spectrum of Chern insulator