arXiv:2312.13945 [hep-ex]AbstractReferencesReviewsResources
First search for dark-trident processes using the MicroBooNE detector
MicroBooNE collaboration, P. Abratenko, O. Alterkait, D. Andrade Aldana, L. Arellano, J. Asaadi, A. Ashkenazi, S. Balasubramanian, B. Baller, G. Barr, D. Barrow, J. Barrow, V. Basque, O. Benevides Rodrigues, S. Berkman, A. Bhanderi, A. Bhat, M. Bhattacharya, M. Bishai, A. Blake, B. Bogart, T. Bolton, J. Y. Book, M. B. Brunetti, L. Camilleri, Y. Cao, D. Caratelli, F. Cavanna, G. Cerati, A. Chappell, Y. Chen, J. M. Conrad, M. Convery, L. Cooper-Troendle, J. I. Crespo-Anadon, R. Cross, M. Del Tutto, S. R. Dennis, P. Detje, A. Devitt, R. Diurba, Z. Djurcic, R. Dorrill, K. Duffy, S. Dytman, B. Eberly, P. Englezos, A. Ereditato, J. J. Evans, R. Fine, O. G. Finnerud, B. T. Fleming, W. Foreman, D. Franco, A. P. Furmanski, F. Gao, D. Garcia-Gamez, S. Gardiner, G. Ge, S. Gollapinni, E. Gramellini, P. Green, H. Greenlee, L. Gu, W. Gu, R. Guenette, P. Guzowski, L. Hagaman, O. Hen, C. Hilgenberg, G. A. Horton-Smith, Z. Imani, B. Irwin, M. S. Ismail, C. James, X. Ji, J. H. Jo, R. A. Johnson, Y. J. Jwa, D. Kalra, N. Kamp, G. Karagiorgi, W. Ketchum, M. Kirby, T. Kobilarcik, I. Kreslo, M. B. Leibovitch, I. Lepetic, J. -Y. Li, K. Li, Y. Li, K. Lin, B. R. Littlejohn, H. Liu, W. C. Louis, X. Luo, C. Mariani, D. Marsden, J. Marshall, N. Martinez, D. A. Martinez Caicedo, S. Martynenko, A. Mastbaum, I. Mawby, N. McConkey, V. Meddage, J. Micallef, K. Miller, K. Mistry, T. Mohayai, A. Mogan, M. Mooney, A. F. Moor, C. D. Moore, L. Mora Lepin, M. M. Moudgalya, S. Mulleria Babu, D. Naples, A. Navrer-Agasson, N. Nayak, M. Nebot-Guinot, J. Nowak, N. Oza, O. Palamara, N. Pallat, V. Paolone, A. Papadopoulou, V. Papavassiliou, H. Parkinson, S. F. Pate, N. Patel, Z. Pavlovic, E. Piasetzky, I. Pophale, X. Qian, J. L. Raaf, V. Radeka, A. Rafique, M. Reggiani-Guzzo, L. Ren, L. Rochester, J. Rodriguez Rondon, M. Rosenberg, M. Ross-Lonergan, C. Rudolph von Rohr, I. Safa, G. Scanavini, D. W. Schmitz, A. Schukraft, W. Seligman, M. H. Shaevitz, R. Sharankova, J. Shi, E. L. Snider, M. Soderberg, S. Soldner-Rembold, J. Spitz, M. Stancari, J. St. John, T. Strauss, A. M. Szelc, W. Tang, N. Taniuchi, K. Terao, C. Thorpe, D. Torbunov, D. Totani, M. Toups, Y. -T. Tsai, J. Tyler, M. A. Uchida, T. Usher, B. Viren, M. Weber, H. Wei, A. J. White, S. Wolbers, T. Wongjirad, M. Wospakrik, K. Wresilo, W. Wu, E. Yandel, T. Yang, L. E. Yates, H. W. Yu, G. P. Zeller, J. Zennamo, C. Zhang
Published 2023-12-21Version 1
We present a first search for dark-trident scattering in a neutrino beam using a data set corresponding to $7.2 \times 10^{20}$ protons on target taken with the MicroBooNE detector at Fermilab. Proton interactions in the neutrino target at the Main Injector produce $\pi^0$ and $\eta$ mesons, which could decay into dark-matter (DM) particles mediated via a dark photon $A^\prime$. A convolutional neural network is trained to identify interactions of the DM particles in the liquid-argon time projection chamber (LArTPC) exploiting its image-like reconstruction capability. In the absence of a DM signal, we provide limits at the $90\%$ confidence level on the squared kinematic mixing parameter $\varepsilon^2$ as a function of the dark-photon mass in the range $10\le M_{A^\prime}\le 400$ MeV. The limits cover previously unconstrained parameter space for the production of fermion or scalar DM particles $\chi$ for two benchmark models with mass ratios $M_{\chi}/M_{A^\prime}=0.6$ and $2$ and for dark fine-structure constants $0.1\le\alpha_D\le 1$.