arXiv Analytics

Sign in

arXiv:2309.02325 [math.NT]AbstractReferencesReviewsResources

Monotone non-decreasing sequences of the Euler totient function

Terence Tao

Published 2023-09-05, updated 2023-09-10Version 2

Let $M(x)$ denote the largest cardinality of a subset of $\{n \in \mathbf{N}: n \leq x\}$ on which the Euler totient function $\varphi(n)$ is non-decreasing. We show that $M(x) = (1+O(\frac{(\log\log x)^5}{\log x})) \pi(x)$ for all $x \geq 10$, answering questions of Erd\H{o}s and Pollack--Pomerance--Trevi\~no.

Comments: 21 pages. Some simplifications to the proof and additional comments and corrections, based on feedback
Categories: math.NT
Subjects: 11A25
Related articles: Most relevant | Search more
arXiv:1812.04657 [math.NT] (Published 2018-12-11)
Note on sums involving the Euler function
arXiv:2211.10644 [math.NT] (Published 2022-11-19)
A Generalisation of Euler Totient Function
arXiv:1510.00923 [math.NT] (Published 2015-10-04)
On The Lehmer Numbers, I