arXiv:2307.15988 [cs.CV]AbstractReferencesReviewsResources
RGB-D-Fusion: Image Conditioned Depth Diffusion of Humanoid Subjects
Sascha Kirch, Valeria Olyunina, Jan Ondřej, Rafael Pagés, Sergio Martin, Clara Pérez-Molina
Published 2023-07-29Version 1
We present RGB-D-Fusion, a multi-modal conditional denoising diffusion probabilistic model to generate high resolution depth maps from low-resolution monocular RGB images of humanoid subjects. RGB-D-Fusion first generates a low-resolution depth map using an image conditioned denoising diffusion probabilistic model and then upsamples the depth map using a second denoising diffusion probabilistic model conditioned on a low-resolution RGB-D image. We further introduce a novel augmentation technique, depth noise augmentation, to increase the robustness of our super-resolution model.
Related articles: Most relevant | Search more
arXiv:2206.11892 [cs.CV] (Published 2022-06-23)
Remote Sensing Change Detection (Segmentation) using Denoising Diffusion Probabilistic Models
arXiv:2307.14648 [cs.CV] (Published 2023-07-27)
Spatial-Frequency U-Net for Denoising Diffusion Probabilistic Models
arXiv:2209.14828 [cs.CV] (Published 2022-09-29)
Denoising Diffusion Probabilistic Models for Styled Walking Synthesis