arXiv:2303.03644 [math.GR]AbstractReferencesReviewsResources
Quantifying separability in limit groups via representations
Keino Brown, Olga Kharlampovich
Published 2023-03-07, updated 2023-04-11Version 2
We show that for any finitely generated subgroup $H$ of a limit group $L$ there exists a finite-index subgroup $K$ containing $H$, such that $K$ is a subgroup of a group obtained from $H$ by a series of extensions of centralizers and free products with $\mathbb Z$. If $H$ is non-abelian, the $K$ is fully residually $H$. We also show that for any finitely generated subgroup of a limit group, there is a finite-dimensional representation of the limit group which separates the subgroup in the induced Zariski topology. As a corollary, we establish a polynomial upper bound on the size of the quotients used to separate a finitely generated subgroup in a limit group. This generalizes the results of Louder, McReynolds and Patel. Another corollary is that a hyperbolic limit group satisfies the Geometric Hanna Neumann conjecture.