arXiv Analytics

Sign in

arXiv:2302.09271 [quant-ph]AbstractReferencesReviewsResources

Entangling dynamics from effective rotor/spin-wave separation in U(1)-symmetric quantum spin models

Tommaso Roscilde, Tommaso Comparin, Fabio Mezzacapo

Published 2023-02-18Version 1

The non-equilibrium dynamics of quantum spin models is a most challenging topic, due to the exponentiality of Hilbert space; and it is central to the understanding of the many-body entangled states that can be generated by state-of-the-art quantum simulators. A particularly important class of evolutions is the one governed by U(1) symmetric Hamiltonians, initialized in a state which breaks the U(1) symmetry -- the paradigmatic example being the evolution of the so-called one-axis-twisting (OAT) model, featuring infinite-range interactions between spins. In this work we show that the dynamics of the OAT model can be closely reproduced by systems with power-law-decaying interactions, thanks to an effective separation between the zero-momentum degrees of freedom, associated with the so-called Anderson tower of states, and reconstructing a OAT model; and finite-momentum ones, associated with spin-wave excitations. This mechanism explains quantitatively the recent numerical observation of spin squeezing and Schr\"odinger-cat generation in the dynamics of dipolar Hamiltonians; and it paves the way for the extension of this observation to a much larger class of models of immediate relevance for quantum simulations.

Related articles: Most relevant | Search more
arXiv:1406.7239 [quant-ph] (Published 2014-06-27)
Beating no-go theorems by engineering defects in quantum spin models
arXiv:0805.2413 [quant-ph] (Published 2008-05-15, updated 2008-06-21)
Quantum spin models with electrons in Penning traps
arXiv:0706.2094 [quant-ph] (Published 2007-06-14, updated 2008-10-30)
Frustration, Area Law, and Interference in Quantum Spin Models