arXiv:2211.00076 [math.NT]AbstractReferencesReviewsResources
One-level density of zeros of Dirichlet $L$-functions over function fields
Published 2022-10-31Version 1
We compute the one-level density of zeros of order $\ell$ Dirichlet $L$-functions over function fields $\mathbb{F}_q[t]$ for $\ell=3,4$ in the Kummer setting ($q\equiv1\pmod{\ell}$) and for $\ell=3,4,6$ in the non-Kummer setting ($q\not\equiv1\pmod{\ell}$). In each case, we obtain a main term predicted by Random Matrix Theory (RMT) and lower order terms not predicted by RMT. We also confirm the symmetry type of the families is unitary, supporting Katz and Sarnak's philosophy.
Comments: 32 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:1002.3289 [math.NT] (Published 2010-02-17)
Function fields and random matrices
arXiv:1404.2435 [math.NT] (Published 2014-04-09)
Zeros of Dirichlet L-functions over Function Fields
arXiv:0811.0076 [math.NT] (Published 2008-11-03)
Galois groups over function fields of positive characteristic