arXiv:2208.13670 [astro-ph.SR]AbstractReferencesReviewsResources
Interferometric imaging, and beam-formed study of a moving Type IV Radio burst with LOFAR
Hongyu Liu, Pietro Zucca, Kyung-Suk Cho, Anshu Kumari, Peijin Zhang, Jasmina Magdalenic, Rok-Soon Kim, Sujin Kim, Juhyung Kang
Published 2022-08-29Version 1
Type IV radio burst has been studied for over 50 years. However, the specifics of the radio emission mechanisms is still an open question. In order to provide more information about the emission mechanisms, we studied a moving type IV radio burst with fine structures (spike group) by using the high resolution capability of Low-Frequency Array (LOFAR) on Aug 25, 2014\textbf{ (SOLA-D-21-00188)}. We present a comparison of Nan\c{c}ay RadioHeliograph (NRH) and the first LOFAR imaging data of type IV radio burst. The degree of circular polarization (DCP) is calculated at frequencies in the range 20$\sim$180 MHz using LOFAR data, and it was found that the value of DCP gradually increased during the event, with values of 10\%$\sim$20\%. LOFAR interferometric data were combined with white light observations in order to track the propagation of this type IV. The kinematics shows a westward motion of the radio sources, slower than the CME leading edge. The dynamic spectrum of LOFAR shows a large number of fine structures with duration of less than 1s and high brightness temperature ($T_\mathrm{B}$), i.e. $10^{12}$$\sim$$10^{13}$ K. The gradual increase of DCP supports gyrosynchrotron emission as the most plausible mechanism for the type IV. However, coherent emissions such as Electron Cyclotron Maser (ECM) instability can be responsible for small scale fine structures. Countless fine structures altogether were responsible for such high $T_\mathrm{B}$.