arXiv Analytics

Sign in

arXiv:2208.12233 [hep-th]AbstractReferencesReviewsResources

Unitarity Cuts of the Worldsheet

Lorenz Eberhardt, Sebastian Mizera

Published 2022-08-25Version 1

We compute the imaginary parts of genus-one string scattering amplitudes. Following Witten's $i\varepsilon$ prescription for the integration contour on the moduli space of worldsheets, we give a general algorithm for computing unitarity cuts of the annulus, M\"obius strip, and torus topologies exactly in $\alpha'$. With the help of tropical analysis, we show how the intricate pattern of thresholds (normal and anomalous) opening up arises from the worldsheet computation. The result is a manifestly-convergent representation of the imaginary parts of amplitudes, which has the analytic form expected from Cutkosky rules in field theory, but bypasses the need for performing laborious sums over the intermediate states. We use this representation to study various physical aspects of string amplitudes, including their behavior in the $(s,t)$ plane, exponential suppression, decay widths of massive strings, total cross section, and low-energy expansions. We find that planar annulus amplitudes exhibit a version of low-spin dominance: at any finite energy, only a finite number of low partial-wave spins give an appreciable contribution to the imaginary part.

Related articles: Most relevant | Search more
arXiv:hep-th/0109035 (Published 2001-09-05)
Role of the imaginary part in the Moyal quantization
arXiv:1007.0237 [hep-th] (Published 2010-07-01)
Exponential suppression with four legs and an infinity of loops
arXiv:1509.01309 [hep-th] (Published 2015-09-03)
Validity check for imaginary part of potential of a moving quarkonia in plasma with hyperscaling violating backgrounds