arXiv:2204.06368 [math.NT]AbstractReferencesReviewsResources
Hasse principles for quadratic forms over function fields
Published 2022-04-13Version 1
We investigate the Hasse principles for isotropy and isometry of quadratic forms over finitely generated field extensions with respect to various sets of discrete valuations. Over purely transcendental field extensions of fields that satisfy property $\mathscr{A}_i(2)$ for some $i$, we find numerous counterexamples to the Hasse principle for isotropy with respect to a relatively small set of discrete valuations. For finitely generated field extensions $K$ of transcendence degree $r$ over an algebraically closed field of characteristic $\ne 2$, we use the $2^r$-dimensional counterexample to the Hasse principle for isotropy due to Auel and Suresh to obtain counterexamples of lower dimensions with respect to the divisorial discrete valuations induced by a variety with function field $K$.