arXiv:2109.10758 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Hopfion Dynamics in Chiral Magnets
Zulfidin Khodzhaev, Emrah Turgut
Published 2021-09-22Version 1
Resonant spin dynamics of topological spin textures are correlated with their topological nature, which can be employed to understand this nature. In this study, we present resonant spin dynamics of three-dimensional topological spin texture, i.e., Neel and Bloch hopfions. Using micromagnetic simulations, we stabilize Bloch and Neel hopfions with bulk and interfacial Dzyaloshinskii-Moriya interaction (DMI), respectively. We identify the ground state spin configuration of both hopfions, effects of anisotropies, geometric confinements, and demagnetizing fields. To confirm topological nature, Hopf number is calculated for each spin texture. Then, we calculate the resonance frequencies and spin-wave modes of spin precessions under multiple magnetic fields. Unique resonance frequencies and specific magnetic field dependence can help to guide experimental studies to identify the three-dimensional topological spin texture of hopfions in functioning chiral magnets when imaging is not possible.