arXiv:2103.02246 [math.AP]AbstractReferencesReviewsResources
Boundedness in a fully parabolic attraction-repulsion chemotaxis system with nonlinear diffusion and singular sensitivity
Published 2021-03-03Version 1
This paper deals with the quasilinear fully parabolic attraction-repulsion chemotaxis system \begin{align*} u_t=\nabla \cdot (D(u)\nabla u) -\nabla \cdot (G(u)\chi(v)\nabla v) +\nabla\cdot(H(u)\xi(w)\nabla w), \quad v_t=d_1\Delta v+\alpha u-\beta v, \quad w_t=d_2\Delta w+\gamma u-\delta w, \quad x \in \Omega,\ t>0, \end{align*} under homogeneous Neumann boundary conditions and initial conditions, where $\Omega \subset \mathbb{R}^n$ $(n \ge 1)$ is a bounded domain with smooth boundary, $d_1, d_2, \alpha, \beta, \gamma, \delta>0$ are constants. Also, the diffusivity $D$, the density-dependent sensitivities $G, H$ fulfill $D(s)=a_0(s+1)^{m-1}$ with $a_0>0$ and $m \in \mathbb{R}$; $0 \le G(s) \le b_0(s+1)^{q-1}$ with $b_0>0$ and $q<\min\{2,\ m+1\}$; $0 \le H(s) \le c_0(s+1)^{r-1}$ with $c_0>0$ and $r<\min\{2,\ m+1\}$, and the signal-dependent sensitivities $\chi, \xi$ satisfy $0<\chi(s)\le \frac{\chi_0}{s^{k_1}}$ with $\chi_0>0$ and $k_1>1$; $0<\xi(s)\le \frac{\xi_0}{s^{k_2}}$ with $\xi_0>0$ and $k_2>1$. Global existence and boundedness in the case that $w=0$ were proved by Ding (J. Math. Anal. Appl.; 2018;461;1260-1270) and Jia-Yang (J. Math. Anal. Appl.; 2019;475;139-153). However, there has been no work on the above fully parabolic attraction-repulsion chemotaxis system with nonlinear diffusion and singular sensitivity. This paper develops global existence and boundedness of classical solutions to the above system by introducing a new test function.