arXiv Analytics

Sign in

arXiv:2010.08205 [hep-th]AbstractReferencesReviewsResources

Quantum Mechanics of Gravitational Waves

Maulik Parikh, Frank Wilczek, George Zahariade

Published 2020-10-16Version 1

For the purpose of analyzing observed phenomena, it has been convenient, and thus far sufficient, to regard gravity as subject to the deterministic principles of classical physics, with the gravitational field obeying Newton's law or Einstein's equations. Here we treat the gravitational field as a quantum field and determine the implications of such treatment for experimental observables. We find that falling bodies in gravity are subject to random fluctuations ("noise") whose characteristics depend on the quantum state of the gravitational field. We derive a stochastic equation for the separation of two falling particles. Detection of this fundamental noise, which may be measurable at gravitational wave detectors, would vindicate the quantization of gravity, and reveal important properties of its sources.

Comments: 5 pages + 3 pages of supplemental material, 2 figures
Categories: hep-th, gr-qc
Related articles: Most relevant | Search more
arXiv:1109.2794 [hep-th] (Published 2011-09-13, updated 2012-05-06)
On entropic gravity: the entropy postulate, entropy content of screens and relation to quantum mechanics
arXiv:hep-th/9403015 (Published 1994-03-02)
On Quantum Mechanics
arXiv:hep-th/9305054 (Published 1993-05-13)
Canonical Transformations in Quantum Mechanics