arXiv Analytics

Sign in

arXiv:2009.02290 [astro-ph.CO]AbstractReferencesReviewsResources

Matter trispectrum: theoretical modelling and comparison to N-body simulations

Davide Gualdi, Sergi Novell, Héctor Gil-Marín, Licia Verde

Published 2020-09-04Version 1

The power spectrum has long been the workhorse summary statistics for large-scale structure cosmological analyses. However, gravitational non-linear evolution moves precious cosmological information from the two-point statistics (such as the power spectrum) to higher-order correlations. Moreover, information about the primordial non-Gaussian signal lies also in higher-order correlations. Without tapping into these, that information remains hidden. While the three-point function (or the bispectrum), even if not extensively, has been studied and applied to data, there has been only limited discussion about the four point/trispectrum. This is because the high-dimensionality of the statistics (in real space a skew-quadrilateral has 6 degrees of freedom), and the high number of skew-quadrilaterals, make the trispectrum numerically and algorithmically very challenging. Here we address this challenge by introducing the i-trispectrum, an integrated trispectrum that only depends on four $k$-modes moduli. We model and measure the matter i-trispectrum from a set of 5000 \textsc{Quijote} N-body simulations both in real and redshift space, finding good agreement between simulations outputs and model up to mildly non-linear scales. Using the power spectrum, bispectrum and i-trispectrum joint data-vector covariance matrix estimated from the simulations, we begin to quantify the added-value provided by the i-trispectrum. In particular, we forecast the i-trispectrum improvements on constraints on the local primordial non-Gaussianity amplitude parameters $f_\mathrm{nl}$ and $g_\mathrm{nl}$. For example, using the full joint data-vector, we forecast $f_\mathrm{nl}$ constraints up to two times ($\sim32\%$) smaller in real (redshift) space than those obtained without i-trispectrum.

Comments: prepared for submission to JCAP, 64 pages (35 pages for the main text), 15 figures, comments are welcome
Categories: astro-ph.CO
Related articles: Most relevant | Search more
arXiv:0910.3207 [astro-ph.CO] (Published 2009-10-16, updated 2010-02-08)
Structure Formation by Fifth Force: Power Spectrum from N-Body Simulations
arXiv:1912.08216 [astro-ph.CO] (Published 2019-12-17)
Turnaround radius of galaxy clusters in N-body simulations
arXiv:1010.0267 [astro-ph.CO] (Published 2010-10-01)
Statistical mechanics of collisionless orbits. III. Comparison with N-body simulations