arXiv Analytics

Sign in

arXiv:2004.09451 [math.AP]AbstractReferencesReviewsResources

Nehari manifold for fractional p(.)-Laplacian system involving concave-convex nonlinearities

Reshmi Biswas, Sweta Tiwari

Published 2020-04-20Version 1

In this article using Nehari manifold method we study the multiplicity of solutions of the following nonlocal elliptic system involving variable exponents and concave-convex nonlinearities: \begin{equation*} \;\;\; \begin{array}{rl} (-\Delta)_{p(\cdot)}^{s} u&=\lambda~ a(x)| u|^{q(x)-2}u+\frac{\alpha(x)}{\alpha(x)+\beta(x)}c(x)| u|^{\alpha(x)-2}u| v| ^{\beta(x)},\hspace{2mm} x\in \Omega; \\ (-\Delta)_{p(\cdot)}^{s} v&=\mu~ b(x)| v|^{q(x)-2}v+\frac{\alpha(x)}{\alpha(x)+\beta(x)}c(x)| v|^{\alpha(x)-2}v| u| ^{\beta(x)},\hspace{2.5mm} x\in \Omega; \\ u=v&=0 ,\hspace{1cm} x\in \Omega^c:=\mathbb R^N\setminus\Omega, \end{array} \end{equation*} where $\Omega\subset\mathbb R^N,~N\geq2$ is a smooth bounded domain, $\lambda,\mu>0$ are the parameters, $s\in(0,1),$ $p\in C(\mathbb R^N\times \mathbb R^N,(1,\infty))$ and $q,\alpha,\beta\in C(\overline{\Omega},(1,\infty))$ are the variable exponents and $a,b,c\in C(\overline{\Omega},[0,\infty))$ are the non-negative weight functions. We show that there exists $\Lambda>0$ such that for all $\lambda+\mu<\Lambda$, there exist two non-trivial and non-negative solutions of the above problem under some assumptions on $q,\alpha,\beta$.

Related articles: Most relevant | Search more
arXiv:1409.0910 [math.AP] (Published 2014-09-02)
Multiplicity of solutions of some quasilinear equations in ${\mathbb{R}^{N}}$ with variable exponents and concave-convex nonlinearities
arXiv:1403.2346 [math.AP] (Published 2014-03-10)
On the uniqueness of solutions of an nonlocal elliptic system
arXiv:2409.05138 [math.AP] (Published 2024-09-08)
Some applications of the Nehari manifold method to functionals in $C^1(X \setminus \{0\})$