arXiv Analytics

Sign in

arXiv:2003.03462 [stat.ML]AbstractReferencesReviewsResources

BasisVAE: Translation-invariant feature-level clustering with Variational Autoencoders

Kaspar Märtens, Christopher Yau

Published 2020-03-06Version 1

Variational Autoencoders (VAEs) provide a flexible and scalable framework for non-linear dimensionality reduction. However, in application domains such as genomics where data sets are typically tabular and high-dimensional, a black-box approach to dimensionality reduction does not provide sufficient insights. Common data analysis workflows additionally use clustering techniques to identify groups of similar features. This usually leads to a two-stage process, however, it would be desirable to construct a joint modelling framework for simultaneous dimensionality reduction and clustering of features. In this paper, we propose to achieve this through the BasisVAE: a combination of the VAE and a probabilistic clustering prior, which lets us learn a one-hot basis function representation as part of the decoder network. Furthermore, for scenarios where not all features are aligned, we develop an extension to handle translation-invariant basis functions. We show how a collapsed variational inference scheme leads to scalable and efficient inference for BasisVAE, demonstrated on various toy examples as well as on single-cell gene expression data.

Related articles: Most relevant | Search more
arXiv:1907.06845 [stat.ML] (Published 2019-07-16)
The continuous Bernoulli: fixing a pervasive error in variational autoencoders
arXiv:1810.11428 [stat.ML] (Published 2018-10-26)
Resampled Priors for Variational Autoencoders
arXiv:1806.02997 [stat.ML] (Published 2018-06-08)
q-Space Novelty Detection with Variational Autoencoders