arXiv:2003.03397 [cs.LG]AbstractReferencesReviewsResources
Dropout: Explicit Forms and Capacity Control
Raman Arora, Peter Bartlett, Poorya Mianjy, Nathan Srebro
Published 2020-03-06Version 1
We investigate the capacity control provided by dropout in various machine learning problems. First, we study dropout for matrix completion, where it induces a data-dependent regularizer that, in expectation, equals the weighted trace-norm of the product of the factors. In deep learning, we show that the data-dependent regularizer due to dropout directly controls the Rademacher complexity of the underlying class of deep neural networks. These developments enable us to give concrete generalization error bounds for the dropout algorithm in both matrix completion as well as training deep neural networks. We evaluate our theoretical findings on real-world datasets, including MovieLens, MNIST, and Fashion-MNIST.