arXiv:1912.09772 [math.NT]AbstractReferencesReviewsResources
Analytic Twists of $\rm GL_3\times \rm GL_2$ Automorphic Forms
Published 2019-12-20Version 1
Let $\pi$ be a Hecke--Maass cusp form for $\rm SL_3(\mathbb{Z})$ with normalized Hecke eigenvalues $\lambda_{\pi}(n,r)$ and let $f$ be a holomorphic or Maass cusp form for $\rm SL_2(\mathbb{Z})$ with normalized Hecke eigenvalues $\lambda_f(n)$. In this paper, we are concerned with obtaining nontrivial estimates for the sum $$ \sum_{r,n\geq 1}\lambda_{\pi}(n,r)\lambda_f(n)e\left(t\varphi(r^2n/N)\right)V\left(r^2n/N\right), $$ where $e(x)=e^{2\pi ix}$, $V(x)\in \mathcal{C}_c^{\infty}(0,\infty)$, $t\geq 1$ is a large parameter and $\varphi(x)$ is some nonlinear real-valued smooth function. As applications, we give an improved subconvexity bound for $\rm GL_3\times \rm GL_2$ $L$-functions in the $t$-aspect, and under the Ramanujan conjecture we derive the following bound for sums of $\rm GL_3\times \rm GL_2$ Fourier coefficients $$ \sum_{r^2n\leq x}\lambda_{\pi}(r,n)\lambda_f(n)\ll x^{5/7-1/364+\varepsilon} $$ for any $\varepsilon>0$, which breaks for the first time the barrier $O(x^{5/7+\varepsilon})$ in a work of Friedlander--Iwaniec.