arXiv:1910.13457 [astro-ph.GA]AbstractReferencesReviewsResources
On the Gas Content, Star Formation Efficiency, and Environmental Quenching of Massive Galaxies in Proto-Clusters at z~2.0-2.5
Jorge A. Zavala, C. M. Casey, J. B. Champagne, Y. Chiang, H. Dannerbauer, P. Drew, H. Fu, J. Spilker, L. Spitler, K. V. Tran, E. Treister, S. Toft
Published 2019-10-29Version 1
We present ALMA Band 6 (nu=233GHz, lambda=1.3mm) continuum observations towards 68 'normal' star-forming galaxies within two Coma-like progenitor structures at z=2.10 and 2.47, from which ISM masses are derived, providing the largest census of molecular gas mass in overdense environments at these redshifts. Our sample comprises galaxies with a stellar mass range of 1x10^9M_sun - 4x10^11M_sun with a mean M_*~6x10^10M_sun. Combining these measurements with multiwavelength observations and SED modeling, we characterize the gas mass fraction and the star formation efficiency, and infer the impact of the environment on galaxies' evolution. Most of our detected galaxies (~70%) have star formation efficiencies and gas fractions similar to those found for coeval field galaxies and in agreement with the field scaling relations. However, we do find that the proto-clusters contain an increased fraction of massive, gas-poor galaxies, with low gas fractions (f_gas<6-10%) and red rest-frame ultraviolet/optical colors typical of post-starburst and passive galaxies. The relatively high abundance of passive galaxies suggests an accelerated evolution of massive galaxies in proto-cluster environments. The large fraction of quenched galaxies in these overdense structures also implies that environmental quenching takes place during the early phases of cluster assembly, even before virialization. From our data, we derive a quenching efficiency of E_q~0.45 and an upper limit on the quenching timescale of T_q<1Gyr.