arXiv:1910.04479 [math.NT]AbstractReferencesReviewsResources
Remark on a Simple Proof of the Mean Value of $K_2(\mathcal{O})$ in Function Fields
Published 2019-10-10Version 1
Let $\mathbb{F}_q$ denote a finite field of odd cardinality $q$, $\mathbb{A}=\mathbb{F}_q[T]$ the polynomial ring over $\mathbb{F}_q$ and $k=\mathbb{F}_q(T)$ the rational function field over $\mathbb{F}_q$. In this paper, we compute the average value of the size of the group $K_2(\mathcal{O}_{\gamma D})$, where $\mathcal{O}_{\gamma D}$ denotes the integral closure of $\mathbb{A}$ in $k(\sqrt{\gamma D})$, $D$ is a monic, square-free polynomial of even degree and $\gamma$ is a fixed generator of $\mathbb{F}_q^*$.
Comments: 6 pages; Comments are welcome
Categories: math.NT
Related articles: Most relevant | Search more
The Riemann Hypothesis for Function Fields over a Finite Field
Fast construction of irreducible polynomials over finite fields
arXiv:1307.1633 [math.NT] (Published 2013-07-05)
The number of reducible space curves over a finite field