arXiv Analytics

Sign in

arXiv:1909.04651 [math.AP]AbstractReferencesReviewsResources

Inviscid limit of vorticity distributions in Yudovich class

Peter Constantin, Theodore D. Drivas, Tarek M. Elgindi

Published 2019-09-10Version 1

We prove that given initial data $\omega_0\in L^\infty(\mathbb{T}^2)$, forcing $g\in L^\infty(0,T; L^\infty(\mathbb{T}^2))$, and any $T>0$, the solutions $u^\nu$ of Navier-Stokes converge strongly in $L^\infty(0,T;W^{1,p}(\mathbb{T}^2))$ for any $p\in [1,\infty)$ to the unique Yudovich weak solution $u$ of the Euler equations. A consequence is that vorticity distribution functions converge to their inviscid counterparts. As a byproduct of the proof, we establish continuity of the Euler solution map for Yudovich solutions in the $L^p$ vorticity topology. The main tool in these proofs is a uniformly controlled loss of regularity property of the linear transport by Yudovich solutions. Our results provide a partial foundation for the Miller--Robert statistical equilibrium theory of vortices as it applies to slightly viscous fluids.

Related articles: Most relevant | Search more
arXiv:1302.0542 [math.AP] (Published 2013-02-03)
On Inviscid Limits for the Stochastic Navier-Stokes Equations and Related Models
arXiv:1902.08101 [math.AP] (Published 2019-02-21)
The inviscid limit of Navier-Stokes equations for vortex-wave data on $\mathbb{R}^2$
arXiv:1911.08978 [math.AP] (Published 2019-11-20)
Stability of equilibria uniformly in the inviscid limit for the Navier-Stokes-Poisson system