arXiv Analytics

Sign in

arXiv:1810.02879 [math.AP]AbstractReferencesReviewsResources

Global well-posedness for the radial, defocusing, nonlinear wave equation for $3 < p < 5$

Benjamin Dodson

Published 2018-10-05Version 1

In this paper we continue the study of the defocusing, energy-subcritical nonlinear wave equation with radial initial data lying in the critical Sobolev space. In this case we prove scattering in the critical norm when $3 < p < 5$.

Related articles: Most relevant | Search more
arXiv:1809.08284 [math.AP] (Published 2018-09-21)
Global well-posedness and scattering for the radial, defocusing, cubic nonlinear wave equation
arXiv:1111.4021 [math.AP] (Published 2011-11-17, updated 2012-02-13)
Global well-posedness and scattering for defocusing, cubic NLS in $\mathbb{R}^3$
arXiv:0805.3378 [math.AP] (Published 2008-05-22)
Global well-posedness and scattering for the defocusing $H^{\frac12}$-subcritical Hartree equation in $\mathbb{R}^d$