arXiv:1809.09831 [math.AP]AbstractReferencesReviewsResources
Large global solutions for nonlinear Schrödinger equations I, mass-subcritical cases
Marius Beceanu, Qingquan Deng, Avy Soffer, Yifei Wu
Published 2018-09-26Version 1
In this paper, we consider the nonlinear Schr\"odinger equation, $$ i\partial_{t}u+\Delta u= \mu|u|^p u, \quad (t,x)\in \mathbb{R}^{d+1}, $$ with $\mu=\pm1, p>0$. In this work, we consider the mass-subcritical cases, that is, $p\in (0,\frac4d)$. We prove that under some restrictions on $d,p$, any radial initial data in the critical space $\dot H^{s_c}(\mathbb{R}^d)$ with compact support, implies global well-posedness.
Comments: 36 pages
Related articles: Most relevant | Search more
arXiv:1901.07709 [math.AP] (Published 2019-01-23)
Large global solutions for nonlinear Schrödinger equations III, energy-supercritical cases
arXiv:1811.04378 [math.AP] (Published 2018-11-11)
Large global solutions for nonlinear Schrödinger equations II, mass-supercritical, energy-subcritical cases
arXiv:1908.01921 [math.AP] (Published 2019-08-06)
Nonlinear Schrödinger Equations for Bose-Einstein Condensates