arXiv:1804.03376 [math.AP]AbstractReferencesReviewsResources
Local uniqueness of $m$-bubbling sequences for the Gel'fand equation
Daniele Bartolucci, Aleks Jevnikar, Youngae Lee, Wen Yang
Published 2018-04-10, updated 2018-04-11Version 2
We consider the Gel'fand problem, $$ \begin{cases} \Delta w_{\varepsilon}+\varepsilon^2 h e^{w_{\varepsilon}}=0\quad&\mbox{in}\quad\Omega, w_{\varepsilon}=0\quad&\mbox{on}\quad\partial\Omega, \end{cases} $$ where $h$ is a nonnegative function in ${\Omega\subset\mathbb{R}^2}$. Under suitable assumptions on $h$ and $\Omega$, we prove the local uniqueness of $m-$bubbling solutions for any $\varepsilon>0$ small enough.
Categories: math.AP
Related articles: Most relevant | Search more
arXiv:1905.11749 [math.AP] (Published 2019-05-28)
Local uniqueness of blow up solutions of mean field equations with singular data
arXiv:1902.03484 [math.AP] (Published 2019-02-09)
Non-uniqueness of blowing-up solutions to the Gelfand problem
arXiv:2210.17427 [math.AP] (Published 2022-10-31)
Existence and local uniqueness of multi-peak solutions for the Chern-Simons-Schrödinger system