arXiv Analytics

Sign in

arXiv:1712.02462 [astro-ph.GA]AbstractReferencesReviewsResources

Cosmic star formation history revealed by AKARI and Hyper Suprime-Cam

Tomo Goto, Nagiosa Oi, Ece Kilerci Eser, Rieko Momose, Ting-Chi Huang, Yousuke Utsumi, Hideo Matsuhara, Yoshiki Toba, Youichi Ohyama, Toshinobu Takagi, Takehiko Wada, Matthew Malkan, Takao Nakagawa, Seong Jin Kim, the AKARI NEP team

Published 2017-12-07Version 1

Understanding infrared (IR) luminosity is fundamental to understanding the cosmic star formation history and AGN evolution. Japanese infrared satellite, AKARI, provided unique data sets to probe this both at low and high redshift; the AKARI all sky survey in 6 bands (9-160 $\mu$m), and the AKARI NEP survey in 9 bands (2-24$\mu$m). The AKARI performed all sky survey in 6 IR bands (9, 18, 65, 90, 140, and 160 $\mu$m) with 3-10 times better sensitivity than IRAS, covering the crucial far-IR wavelengths across the peak of the dust emission. Combined with a better spatial resolution, we measure the total infrared luminosity ($L_{TIR}$) of individual galaxies, and thus, the total infrared luminosity density of the local Universe much more precisely than previous work. In the AKARI NEP wide field, AKARI has obtained deep images in the mid-infrared (IR), covering 5.4 deg$^2$. However, our previous work was limited to the central area of 0.25 deg$^2$ due to the lack of deep optical coverage. To rectify the situation, we used the newly advent Subaru telescope's Hyper Suprime-Cam to obtain deep optical images over the entire 5.4 deg$^2$ of the AKARI NEP wide field. With this deep and wide optical data, we, for the first time, can use the entire AKARI NEP wide data to construct restframe 8$\mu$m, 12$\mu$m, and total infrared (TIR) luminosity functions (LFs) at 0.15$<z<$2.2. A continuous 9-band filter coverage in the mid-IR wavelength (2.4, 3.2, 4.1, 7, 9, 11, 15, 18, and 24$\mu$m) by the AKARI satellite allowed us to estimate restframe 8$\mu$m and 12$\mu$m luminosities without using a large extrapolation based on a SED fit, which was the largest uncertainty in previous work. By combining these two results, we reveal dust-hidden cosmic star formation history and AGN evolution from z=0 to z=2.2, all probed by the AKARI satellite.

Comments: Proceedings of the "The Cosmic Wheel and the Legacy of the AKARI archive: from galaxies and stars to planets and life", held from October 17 - 20, 2017, Tokyo, Japan. Invited talk
Categories: astro-ph.GA, astro-ph.CO
Related articles: Most relevant | Search more
arXiv:1409.1919 [astro-ph.GA] (Published 2014-09-05)
Neutral hydrogen in galaxy halos at the peak of the cosmic star formation history
arXiv:1502.05053 [astro-ph.GA] (Published 2015-02-17)
The rise and fall of stellar discs across the peak of cosmic star formation history: mergers versus smooth accretion
arXiv:2204.01649 [astro-ph.GA] (Published 2022-04-04)
Cosmic star formation history with tomographic CIB-galaxy cross-correlation
Ziang Yan et al.