arXiv:1708.02803 [hep-th]AbstractReferencesReviewsResources
Localization in the Rindler Wedge
M. Asorey, A. P. Balachandran, G. Marmo, A. R. de Queiroz
Published 2017-08-09Version 1
One of the striking features of QED is that charged particles create a coherent cloud of photons. The resultant coherent state vectors of photons generate a non-trivial representation of the localized algebra of observables that do not support a representation of the Lorentz group: Lorentz symmetry is spontaneously broken. We show in particular that Lorentz boost generators diverge in this representation, a result shown also in [1] (See also [2]). Localization of observables, for example in the Rindler wedge, uses Poincar\'e invariance in an essential way [3]. Hence in the presence of charged fields, the photon observables cannot be localized in the Rindler wedge. These observations may have a bearing on the black hole information loss paradox, as the physics in the exterior of the black hole has points of resemblance to that in the Rindler wedge.