arXiv Analytics

Sign in

arXiv:1707.07767 [cs.LG]AbstractReferencesReviewsResources

Bellman Gradient Iteration for Inverse Reinforcement Learning

Kun Li, Yanan Sui, Joel W. Burdick

Published 2017-07-24Version 1

This paper develops an inverse reinforcement learning algorithm aimed at recovering a reward function from the observed actions of an agent. We introduce a strategy to flexibly handle different types of actions with two approximations of the Bellman Optimality Equation, and a Bellman Gradient Iteration method to compute the gradient of the Q-value with respect to the reward function. These methods allow us to build a differentiable relation between the Q-value and the reward function and learn an approximately optimal reward function with gradient methods. We test the proposed method in two simulated environments by evaluating the accuracy of different approximations and comparing the proposed method with existing solutions. The results show that even with a linear reward function, the proposed method has a comparable accuracy with the state-of-the-art method adopting a non-linear reward function, and the proposed method is more flexible because it is defined on observed actions instead of trajectories.

Related articles: Most relevant | Search more
arXiv:2106.03498 [cs.LG] (Published 2021-06-07)
Identifiability in inverse reinforcement learning
arXiv:2002.02794 [cs.LG] (Published 2020-02-07)
Reward-Free Exploration for Reinforcement Learning
arXiv:1801.09624 [cs.LG] (Published 2018-01-29)
Learning the Reward Function for a Misspecified Model