arXiv Analytics

Sign in

arXiv:1706.05123 [cs.LG]AbstractReferencesReviewsResources

Deriving Compact Laws Based on Algebraic Formulation of a Data Set

Wenqing Xu, Mark Stalzer

Published 2017-06-16Version 1

In various subjects, there exist compact and consistent relationships between input and output parameters. Discovering the relationships, or namely compact laws, in a data set is of great interest in many fields, such as physics, chemistry, and finance. While data discovery has made great progress in practice thanks to the success of machine learning in recent years, the development of analytical approaches in finding the theory behind the data is relatively slow. In this paper, we develop an innovative approach in discovering compact laws from a data set. By proposing a novel algebraic equation formulation, we convert the problem of deriving meaning from data into formulating a linear algebra model and searching for relationships that fit the data. Rigorous proof is presented in validating the approach. The algebraic formulation allows the search of equation candidates in an explicit mathematical manner. Searching algorithms are also proposed for finding the governing equations with improved efficiency. For a certain type of compact theory, our approach assures convergence and the discovery is computationally efficient and mathematically precise.

Related articles: Most relevant | Search more
arXiv:2303.17001 [cs.LG] (Published 2023-03-29)
The G-invariant graph Laplacian
arXiv:2312.15762 [cs.LG] (Published 2023-12-25)
On Robust Wasserstein Barycenter: The Model and Algorithm
arXiv:2308.09907 [cs.LG] (Published 2023-08-19)
Imputing Brain Measurements Across Data Sets via Graph Neural Networks