arXiv Analytics

Sign in

arXiv:1704.05461 [hep-th]AbstractReferencesReviewsResources

Quantum critical response: from conformal perturbation theory to holography

Andrew Lucas, Todd Sierens, William Witczak-Krempa

Published 2017-04-18Version 1

We discuss dynamical response functions near quantum critical points, allowing for both a finite temperature and detuning by a relevant operator. When the quantum critical point is described by a conformal field theory (CFT), conformal perturbation theory and the operator product expansion can be used to fix the first few leading terms at high frequencies. Knowledge of the high frequency response allows us then to derive non-perturbative sum rules. We show, via explicit computations, how holography recovers the general results of CFT, and the associated sum rules, for any holographic field theory with a conformal UV completion -- regardless of any possible new ordering and/or scaling physics in the IR. We numerically obtain holographic response functions at all frequencies, allowing us to probe the breakdown of the asymptotic high-frequency regime. Finally, we show that high frequency response functions in holographic Lifshitz theories are quite similar to their conformal counterparts, even though they are not strongly constrained by symmetry.

Related articles: Most relevant | Search more
arXiv:1711.02690 [hep-th] (Published 2017-11-07)
Holography Beyond AdS
arXiv:1308.0329 [hep-th] (Published 2013-08-01, updated 2014-01-23)
Conformal field theories in a periodic potential: results from holography and field theory
arXiv:1211.4550 [hep-th] (Published 2012-11-19)
Holography for inflation using conformal perturbation theory