arXiv Analytics

Sign in

arXiv:1702.02033 [math.AP]AbstractReferencesReviewsResources

Domains of type 1,1 operators: a case for Triebel--Lizorkin spaces

Jon Johnsen

Published 2017-02-07Version 1

Pseudo-differential operators of type 1,1 are proved continuous from the Triebel--Lizorkin space $F^d_{p,1}$ to $L_p$ for $1\le p<\infty$, when of order d, and this is the largest possible domain among the Besov and Triebel--Lizorkin spaces. H\"ormander's condition on the twisted diagonal is extended to this framework, using a general support rule for Fourier transformed pseudo-differential operators.

Comments: 4 pages. Appeared in Comptes Rendu Mathematiques in 2004
Journal: Comptes Rendus Academie de Sciences Paris, Serie I 339 (2004), 115-118
Categories: math.AP
Subjects: 47G30, 46E35
Related articles:
arXiv:1702.01070 [math.AP] (Published 2017-02-03)
Domains of pseudo-differential operators: a case for the Triebel--Lizorkin spaces
arXiv:1911.04884 [math.AP] (Published 2019-11-12)
Elliptic and Parabolic Boundary Value Problems in Weighted Function Spaces