arXiv Analytics

Sign in

arXiv:1702.01831 [cond-mat.stat-mech]AbstractReferencesReviewsResources

Trimming the Independent Fat: Sufficient Statistics, Mutual Information, and Predictability from Effective Channel States

Ryan G. James, John R. Mahoney, James P. Crutchfield

Published 2017-02-07Version 1

One of the most fundamental questions one can ask about a pair of random variables X and Y is the value of their mutual information. Unfortunately, this task is often stymied by the extremely large dimension of the variables. We might hope to replace each variable by a lower-dimensional representation that preserves the relationship with the other variable. The theoretically ideal implementation is the use of minimal sufficient statistics, where it is well-known that either X or Y can be replaced by their minimal sufficient statistic about the other while preserving the mutual information. While intuitively reasonable, it is not obvious or straightforward that both variables can be replaced simultaneously. We demonstrate that this is in fact possible: the information X's minimal sufficient statistic preserves about Y is exactly the information that Y's minimal sufficient statistic preserves about X. As an important corollary, we consider the case where one variable is a stochastic process' past and the other its future and the present is viewed as a memoryful channel. In this case, the mutual information is the channel transmission rate between the channel's effective states. That is, the past-future mutual information (the excess entropy) is the amount of information about the future that can be predicted using the past. Translating our result about minimal sufficient statistics, this is equivalent to the mutual information between the forward- and reverse-time causal states of computational mechanics. We close by discussing multivariate extensions to this use of minimal sufficient statistics.

Related articles: Most relevant | Search more
arXiv:0809.5113 [cond-mat.stat-mech] (Published 2008-09-30, updated 2009-03-05)
Mutual Information and Boson Radius in c=1 Critical Systems in One Dimension
arXiv:1011.4421 [cond-mat.stat-mech] (Published 2010-11-19, updated 2010-11-29)
Mutual information in classical spin models
arXiv:cond-mat/0101161 (Published 2001-01-11, updated 2001-03-19)
Mutual Information of Population Codes and Distance Measures in Probability Space