arXiv Analytics

Sign in

arXiv:1610.09736 [cs.CV]AbstractReferencesReviewsResources

WaveNet: a deep convolutional neural network using directional wavelets for low-dose X-ray CT reconstruction

Eunhee Kan, Junhong Min, Jong Chul Ye

Published 2016-10-31Version 1

Due to the potential risk of inducing cancers, radiation dose of X-ray CT should be reduced for routine patient scanning. However, in low-dose X-ray CT, severe artifacts usually occur due to photon starvation, beamhardening, etc, which decrease the reliability of diagnosis. Thus, high quality reconstruction from low-dose X-ray CT data has become one of the important research topics in CT community. Conventional model-based denoising approaches are, however, computationally very expensive, and image domain denoising approaches hardly deal with CT specific noise patterns. To address these issues, we propose an algorithm using a deep convolutional neural network (CNN), which is applied to wavelet transform coefficients of low-dose CT images. Specifically, by using a directional wavelet transform for extracting directional component of artifacts and exploiting the intra- and inter-band correlations, our deep network can effectively suppress CT specific noises. Moreover, our CNN is designed to have various types of residual learning architecture for faster network training and better denoising. Experimental results confirm that the proposed algorithm effectively removes complex noise patterns of CT images, originated from the reduced X-ray dose. In addition, we show that wavelet domain CNN is efficient in removing the noises from low-dose CT compared to an image domain CNN. Our results were rigorously evaluated by several radiologists and won the second place award in 2016 AAPM Low-Dose CT Grand Challenge. To the best of our knowledge, this work is the first deep learning architecture for low-dose CT reconstruction that has been rigorously evaluated and proven for its efficacy.

Related articles: Most relevant | Search more
arXiv:1607.02720 [cs.CV] (Published 2016-07-10)
Memory Efficient Nonuniform Quantization for Deep Convolutional Neural Network
arXiv:1312.6082 [cs.CV] (Published 2013-12-20, updated 2014-04-14)
Multi-digit Number Recognition from Street View Imagery using Deep Convolutional Neural Networks
arXiv:1706.09450 [cs.CV] (Published 2017-06-28)
The application of deep convolutional neural networks to ultrasound for modelling of dynamic states within human skeletal muscle