arXiv Analytics

Sign in

arXiv:1607.03937 [astro-ph.EP]AbstractReferencesReviewsResources

Dynamics of Stellar Spin Driven by Planets Undergoing Lidov-Kozai Migration: Paths to Spin-Orbit Misalignment

Natalia I. Storch, Dong Lai, Kassandra R. Anderson

Published 2016-07-13Version 1

Many exoplanetary systems containing hot Jupiters (HJs) exhibit significant misalignment between the spin axes of the host stars and the orbital angular momentum axes of the planets ("spin-orbit misalignment"). High-eccentricity migration involving Lidov-Kozai oscillations of the planet's orbit induced by a distant perturber is a possible channel for producing such misaligned HJ systems. Previous works have shown that the dynamical evolution of the stellar spin axis during the high-$e$ migration plays a dominant role in generating the observed spin-orbit misalignment. Numerical studies have also revealed various patterns of the evolution of the stellar spin axis leading to the final misalignment. Here we develop an analytic theory to elucidate the evolution of spin-orbit misalignment during the Lidov-Kozai migration of planets in stellar binaries. Secular spin-orbit resonances play a key role in the misalignment evolution. We include the effects of short-range forces and tidal dissipation, and categorize the different possible paths to spin-orbit misalignment as a function of various physical parameters (e.g. planet mass and stellar rotation period). We identify five distinct spin-orbit evolution paths and outcomes, only two of which are capable of producing retrograde orbits. We show that these paths to misalignment and the outcomes depend only on two dimensionless parameters, which compare the stellar spin precession frequency with the rate of change of the planet's orbital axis, and the Lidov-Kozai oscillation frequency. Our analysis reveals a number of novel phenomena for the stellar spin evolution, ranging from bifurcation, adiabatic advection, to fully chaotic evolution of spin-orbit angles.

Related articles: Most relevant | Search more
arXiv:2305.13397 [astro-ph.EP] (Published 2023-05-22)
The Spin-Orbit Misalignment of TOI-1842b: The First Measurement of the Rossiter-McLaughlin Effect for a Warm Sub-Saturn around a Massive Star
arXiv:1108.4493 [astro-ph.EP] (Published 2011-08-23, updated 2011-10-05)
Further Observations of the Tilted Planet XO-3: A New Determination of Spin-Orbit Misalignment, and Limits on Differential Rotation
arXiv:1406.4183 [astro-ph.EP] (Published 2014-06-16)
Early Excitation of Spin-Orbit Misalignments in Close-in Planetary Systems