arXiv Analytics

Sign in

arXiv:1601.07256 [quant-ph]AbstractReferencesReviewsResources

Discrimination of two-qubit unitaries via local operations and classical communication

Joonwoo Bae

Published 2016-01-27Version 1

Distinguishability is a fundamental and operational task generally connected to information applications. In quantum information theory, from the postulates of quantum mechanics it often has an intrinsic limitation, which then dictates and also characterises capabilities of related information tasks. In this work, we consider discrimination between bipartite two-qubit unitary transformations by local operations and classical communication (LOCC) and its relations to entangling capabilities of given unitaries. We show that a pair of entangling unitaries which do not contain local parts, if they are perfectly distinguishable by global operations, can also be perfectly distinguishable by LOCC. There also exist non-entangling unitaries, e.g. local unitaries, that are perfectly discriminated by global operations but not by LOCC. The results show that capabilities of LOCC are strictly restricted than global operations in distinguishing bipartite unitaries for a finite number of repetitions, contrast to discrimination of a pair of bipartite states and also to asymptotic discrimination of unitaries.

Comments: 9pages, 3 figures
Journal: Sci. Rep. 5, 18270 (2015)
Categories: quant-ph
Related articles: Most relevant | Search more
arXiv:1711.03865 [quant-ph] (Published 2017-11-09)
Capability of local operations and classical communication for distinguishing bipartite unitary operations
arXiv:quant-ph/0304123 (Published 2003-04-18)
Direct estimation of functionals of density operators by local operations and classical communication
arXiv:1904.10980 [quant-ph] (Published 2019-04-24)
Strong bounds on required resources for quantum channels by local operations and classical communication