arXiv Analytics

Sign in

arXiv:1601.05541 [hep-ph]AbstractReferencesReviewsResources

Tetraquark state candidates: $Y(4260)$, $Y(4360)$, $Y(4660)$ and $Z_c(4020/4025)$

Zhi-Gang Wang

Published 2016-01-21Version 1

In this article, we construct the axialvector-diquark-axialvector-antidiquark type tensor current to interpolate both the vector and axialvector tetraquark states, then calculate the contributions of the vacuum condensates up to dimension-10 in the operator product expansion, and obtain the QCD sum rules for both the vector and axialvector tetraquark states. The numerical results support assigning the $Z_c(4020/4025)$ to be the $J^{PC}=1^{+-}$ diquark-antidiquark type tetraquark state, and assigning the $Y(4660)$ to be the $J^{PC}=1^{--}$ diquark-antidiquark type tetraquark state. Furthermore, we take the $Y(4260)$ and $Y(4360)$ as the mixed charmonium-tetraquark states, and construct the two-quark-tetraquark type tensor currents to study the masses and pole residues. The numerical results support assigning the $Y(4260)$ and $Y(4360)$ to be the mixed charmonium-tetraquark states.

Comments: 12 pages, 6 figures. arXiv admin note: text overlap with arXiv:1508.01468
Categories: hep-ph
Related articles: Most relevant | Search more
arXiv:1502.04619 [hep-ph] (Published 2015-02-13)
Tetraquark state candidates: $Y(4140)$, $Y(4274)$ and $X(4350)$
arXiv:1607.00701 [hep-ph] (Published 2016-07-03)
Reanalysis of the $X(4140)$ as axialvector tetraquark state with QCD sum rules
arXiv:1602.08711 [hep-ph] (Published 2016-02-28)
Analysis of the $X(5568)$ as scalar tetraquark state in the diquark-antidiquark model with QCD sum rules