arXiv Analytics

Sign in

arXiv:1512.06071 [math.GR]AbstractReferencesReviewsResources

Asymptotic dimension and small-cancellation for hierarchically hyperbolic spaces and groups

Jason Behrstock, Mark F. Hagen, Alessandro Sisto

Published 2015-12-18Version 1

We prove that all hierarchically hyperbolic spaces have finite asymptotic dimension and obtain strong bounds on these dimensions. One application of this result is to obtain the sharpest known bound on the asymptotic dimension of the mapping class group of a finite type surface: improving the bound from exponential to at most quadratic in the complexity of the surface. We also apply the main result to various other hierarchically hyperbolic groups and spaces. We also prove a small-cancellation result namely: if $G$ is a hierarchically hyperbolic group, $H\leq G$ is a suitable hyperbolically embedded subgroup, and $N\triangleleft H$ is "sufficiently deep" in $H$, then $G/\langle\langle N\rangle\rangle$ is a relatively hierarchically hyperbolic group. This new class provides many new examples to which our asymptotic dimension bounds apply. Along the way, we prove new results about the structure of HHSs, for example: the associated hyperbolic spaces are always obtained, up to quasi-isometry, by coning off canonical coarse product regions in the original space (generalizing a relation established by Masur--Minsky between the complex of curves of a surface and Teichm\"{u}ller space).

Related articles: Most relevant | Search more
arXiv:1810.06476 [math.GR] (Published 2018-10-15)
A refined combination theorem for hierarchically hyperbolic groups
arXiv:2308.16335 [math.GR] (Published 2023-08-30)
A Combinatorial Structure for Many Hierarchically Hyperbolic Spaces
arXiv:1809.09303 [math.GR] (Published 2018-09-25)
Convexity in Hierarchically Hyperbolic Spaces