arXiv Analytics

Sign in

arXiv:1511.07140 [math.NT]AbstractReferencesReviewsResources

On a cubic moment of Hardy's function with a shift

Aleksandar Ivić

Published 2015-11-23Version 1

An asymptotic formula for $$ \int_{T/2}^{T}Z^2(t)Z(t+U)\,dt\qquad(0< U = U(T) \le T^{1/2-\varepsilon}) $$ is derived, where $$ Z(t) := \zeta(1/2+it){\bigl(\chi(1/2+it)\bigr)}^{-1/2}\quad(t\in\Bbb R), \quad \zeta(s) = \chi(s)\zeta(1-s) $$ is Hardy's function. The cubic moment of $Z(t)$ is also discussed, and a mean value result is presented which supports the author's conjecture that $$ \int_1^TZ^3(t)\,dt \;=\;O_\varepsilon(T^{3/4+\varepsilon}). $$

Comments: 14 pages
Categories: math.NT
Subjects: 11M06, 11N37
Related articles: Most relevant | Search more
arXiv:1601.06512 [math.NT] (Published 2016-01-25)
Hardy's function $Z(t)$ - results and problems
arXiv:math/0305179 [math.NT] (Published 2003-05-13, updated 2003-11-10)
A mean value result involving the fourth moment of $|ζ(1/2+it)|$
arXiv:2304.05181 [math.NT] (Published 2023-04-11)
A note on the zeros of the derivatives of Hardy's function $Z(t)$