arXiv Analytics

Sign in

arXiv:1511.03948 [math.AP]AbstractReferencesReviewsResources

Biharmonic equation with singular nonlinearity

J. Giacomoni, S. Prashanth, G. Warnault

Published 2015-11-12Version 1

We consider the following problem: \begin{eqnarray*} ( P)\qquad \displaystyle\left\{\begin{array} {ll} & \Delta^2 u = K(x)u^{-\alpha} \quad \mbox{ in }\,\Omega , \\ &u> 0\quad \mbox{ in }\,\Omega, \;\;u\vert_{\partial\Omega}=0, \,\Delta u\vert_{\partial\Omega} = 0. \end{array}\right. \end{eqnarray*} We prove the main existence result: Assume that $\alpha+\beta<2$. Then there exists a unique solution $u$ to $(P)$. Furthermore, there exist $c_1, c_2>0$ such that \begin{eqnarray}\label{behaviour-bound} c_1 \rho(x)\leq u(x)\leq c_2 \rho(x) \end{eqnarray} where $\rho(x)=d(x,\partial\Omega)$. This result is sharp: Assume that $\alpha+\beta\geq 2$. Then, there is no solution to $(P)$.

Related articles: Most relevant | Search more
arXiv:1411.5875 [math.AP] (Published 2014-11-21)
On Dirichlet problems with singular nonlinearity of indefinite sign
arXiv:0911.0308 [math.AP] (Published 2009-11-02)
A biharmonic equation with singular nonlinearity
arXiv:1604.00801 [math.AP] (Published 2016-04-04)
Multiplicity results of fractional $p$-Laplace equations with sign-changing and singular nonlinearity