arXiv Analytics

Sign in

arXiv:1501.02605 [math.NT]AbstractReferencesReviewsResources

On connection between values of Riemann zeta function at integers and generalized harmonic numbers

Paweł J. Szabłowski

Published 2015-01-12Version 1

Using Euler transformation of series we relate values of Hurwitz zeta function at integer and rational values of arguments to certain rapidly converging series where some generalized harmonic numbers appear. The form of these generalized harmonic numbers carries information about the values of the arguments of Hurwitz function. In particular we prove: $\forall k\in \mathbb{N}:$ $\zeta (k,1)\allowbreak =\allowbreak \frac{2^{k-1}}{2^{k-1}-1}% \sum_{n=1}^{\infty }\frac{H_{n}^{(k-1)}}{n2^{n}},$ where $H_{n}^{(k)}$ are defined below generalized harmonic numbers. Further we find generating function of the numbers $\hat{\zeta}(k)=\sum_{j=1}^{\infty }(-1)^{j-1}/j^{k}. $

Related articles: Most relevant | Search more
arXiv:2103.13542 [math.NT] (Published 2021-03-25)
Moments of the Hurwitz zeta Function on the Critical Line
arXiv:1610.07945 [math.NT] (Published 2016-10-25)
Real zeros of the Hurwitz zeta function
arXiv:0812.1303 [math.NT] (Published 2008-12-06)
On the Taylor Coefficients of the Hurwitz Zeta Function