arXiv Analytics

Sign in

arXiv:1411.3759 [math.NT]AbstractReferencesReviewsResources

Finiteness of unramified deformation rings

Patrick B. Allen, Frank Calegari

Published 2014-11-13Version 1

We prove that the universal unramified deformation ring $R^{\mathrm{unr}}$ of a continuous Galois representation $\overline{\rho}: G_{F^{+}} \rightarrow \mathrm{GL}_n(k)$ (for a totally real field $F^{+}$ and finite field $k$) is finite over $\mathcal{O} = W(k)$ in many cases. We also prove (under similar hypotheses) that the universal deformation ring $R^{\mathrm{univ}}$ is finite over the local deformation ring $R^{\mathrm{loc}}$.

Comments: To appear in Algebra & Number Theory
Categories: math.NT
Subjects: 11F80, 11F70
Related articles: Most relevant | Search more
arXiv:0711.1800 [math.NT] (Published 2007-11-12, updated 2007-11-13)
Arithmetic and Geometric Progressions in Productsets over Finite Fields
arXiv:0905.1642 [math.NT] (Published 2009-05-11, updated 2011-11-19)
Fast construction of irreducible polynomials over finite fields
arXiv:1211.5771 [math.NT] (Published 2012-11-25, updated 2012-11-29)
Capturing Forms in Dense Subsets of Finite Fields