arXiv:1407.8048 [cond-mat.mes-hall]AbstractReferencesReviewsResources
Quantum transport through 3D Dirac materials
Published 2014-07-30Version 1
Bismuth and its alloys provide a paradigm to realize three dimensional materials whose low-energy effective theory is given by Dirac equation in 3+1 dimensions. We study the quantum transport properties of three dimensional Dirac materials within the framework of Landauer-B\"uttiker formalism. Charge carriers in normal metal satisfying the Schr\"odinger equation, can be split into four-component with appropriate matching conditions at the boundary with the three dimensional Dirac material (3DDM). We calculate the conductance and the Fano factor of an interface separating 3DDM from a normal metal, as well as the conductance through a slab of 3DDM. Under certain circumstances the 3DDM appears transparent to electrons hitting the 3DDM. We find that electrons hitting the metal-3DDM interface from metallic side can enter 3DDM in a reversed spin state as soon as their angle of incidence deviates from the the direction perpendicular to interface. However the presence of a second interface completely cancels this effect.