arXiv:1406.5723 [math.AP]AbstractReferencesReviewsResources
Moment bounds for the corrector in stochastic homogenization of a percolation model
Agnes Lamacz, Stefan Neukamm, Felix Otto
Published 2014-06-22Version 1
We study the corrector equation in stochastic homogenization for a simplified Bernoulli percolation model on $\mathbb{Z}^d$, $d>2$. The model is obtained from the classical $\{0,1\}$-Bernoulli bond percolation by conditioning all bonds parallel to the first coordinate direction to be open. As a main result we prove (in fact for a slightly more general model) that stationary correctors exist and that all finite moments of the corrector are bounded. This extends a previous result in [GO1], where uniformly elliptic conductances are treated, to the degenerate case. With regard to the associated random conductance model, we obtain as a side result that the corrector not only grows sublinearly, but slower than any polynomial rate. Our argument combines a quantification of ergodicity by means of a Spectral Gap on Glauber dynamics with regularity estimates on the gradient of the elliptic Green's function.