arXiv Analytics

Sign in

arXiv:1312.6551 [quant-ph]AbstractReferencesReviewsResources

Opto-Nanomechanics Strongly Coupled to a Rydberg Superatom: Coherent vs. Incoherent Dynamics

A. Carmele, B. Vogell, K. Stannigel, P. Zoller

Published 2013-12-23, updated 2013-12-27Version 2

We propose a hybrid optomechanical quantum system consisting of a moving membrane strongly coupled to an ensemble of N atoms with a Rydberg state. Due to the strong van-der-Waals interaction between the atoms, the ensemble forms an effective two-level system, a Rydberg superatom, with a collectively enhanced atom-light coupling. Using this superatom imposed collective enhancement strong coupling between membrane and superatom is feasible for parameters within the range of current experiments. The quantum interface to couple the membrane and the superatom can be a pumped single mode cavity, or a laser field in free space, where the Rydberg superatom and the membrane are spatially separated. In addition to the coherent dynamics, we study in detail the impact of the typical dissipation processes, in particular the radiative decay as a source for incoherent superpositions of atomic excitations. We identify the conditions to suppress these incoherent dynamics and thereby a parameter regime for strong coupling. The Rydberg superatom in this hybrid system serves as a toolbox for the nanomechanical resonator allowing for a wide range of applications such as state transfer, sympathetic cooling and non-classical state preparation. As an illustration, we show that a thermally occupied membrane can be prepared in a non-classical state without the necessity of ground state cooling.

Related articles: Most relevant | Search more
arXiv:quant-ph/9709024 (Published 1997-09-11)
Incoherent dynamics in neutron-matter interaction
arXiv:2106.10858 [quant-ph] (Published 2021-06-21)
Single-shot measurement of a Rydberg superatom via collective photon burst
arXiv:2312.03649 [quant-ph] (Published 2023-12-06)
Quantum Optics with Rydberg Superatoms