arXiv Analytics

Sign in

arXiv:1310.6360 [hep-th]AbstractReferencesReviewsResources

Stability and Spectrum of Compactifications on Product Manifolds

Adam R. Brown, Alex Dahlen

Published 2013-10-23, updated 2014-12-23Version 2

We study the spectrum and perturbative stability of Freund-Rubin compactifications on $M_p \times M_{Nq}$, where $M_{Nq}$ is itself a product of $N$ $q$-dimensional Einstein manifolds. The higher-dimensional action has a cosmological term $\Lambda$ and a $q$-form flux, which individually wraps each element of the product; the extended dimensions $M_p$ can be anti-de Sitter, Minkowski, or de Sitter. We find the masses of every excitation around this background, as well as the conditions under which these solutions are stable. This generalizes previous work on Freund-Rubin vacua, which focused on the $N=1$ case, in which a $q$-form flux wraps a single $q$-dimensional Einstein manifold. The $N=1$ case can have a classical instability when the $q$-dimensional internal manifold is a product---one of the members of the product wants to shrink while the rest of the manifold expands. Here, we will see that individually wrapping each element of the product with a lower-form flux cures this cycle-collapse instability. The $N=1$ case can also have an instability when $\Lambda>0$ and $q\ge4$ to shape-mode perturbations; we find the same instability in compactifications with general $N$, and show that it even extends to cases where $\Lambda\le0$. On the other hand, when $q=2$ or 3, the shape modes are always stable and there is a broad class of AdS and de Sitter vacua that are perturbatively stable to all fluctuations.

Comments: 52 pages, 4 figures; v2: footnote and references added
Journal: Phys. Rev. D 90, 044047 (2014)
Categories: hep-th
Subjects: 04.50.-h, 95.30.Sf
Related articles: Most relevant | Search more
arXiv:hep-th/0105074 (Published 2001-05-08)
Instability of breathers in the topological discrete sine-Gordon system
arXiv:1110.5641 [hep-th] (Published 2011-10-25, updated 2012-04-10)
New instability of non-extremal black holes: spitting out supertubes
arXiv:hep-th/0404139 (Published 2004-04-20, updated 2004-05-13)
Gyrating Strings: A new instability of black strings?