arXiv:1308.1456 [math.NT]AbstractReferencesReviewsResources
Character sums over shifted primes
Published 2013-08-07, updated 2013-09-24Version 2
For integer $q$, let $\chi$ be a primitive multiplicative character$\pmod q.$ For integer $a$ coprime to $q$, we obtain a new bound for the sums $$\sum_{n\le N}\Lambda(n)\chi(n+a),$$ where $\Lambda(n)$ is the von Mangoldt function. This bound improves and extends the range of a result of Friedlander, Gong and Shparlinski
Comments: 26 pages
Categories: math.NT
Related articles: Most relevant | Search more
arXiv:2309.02948 [math.NT] (Published 2023-09-06)
Character sums over elements of extensions of finite fields with restricted coordinates
arXiv:2406.05217 [math.NT] (Published 2024-06-07)
The shifted prime-divisor function over shifted primes
arXiv:1302.0348 [math.NT] (Published 2013-02-02)
Character sums over unions of intervals