arXiv:1305.7279 [nucl-th]AbstractReferencesReviewsResources
The longitudinal response function of the deuteron in chiral effective field theory
C. -J. Yang, Daniel R. Phillips
Published 2013-05-31, updated 2013-10-11Version 3
We use chiral effective field theory (EFT) to make predictions for the longitudinal electromagnetic response function of the deuteron, f_L, which is measured in d(e,e'N) reactions. In this case the impulse approximation gives the full chiral EFT result up to corrections that are of O(P^4) relative to leading. By varying the cutoff in the chiral EFT calculations between 0.6 and 1 GeV we conclude that the calculation is accurate to better than 10 % for values of q^2 within 4 fm^{-2} of the quasi-free peak, up to final-state energies E_{np}=60 MeV. In these regions chiral EFT is in reasonable agreement with predictions for f_L obtained using the Bonn potential. We also find good agreement with existing experimental data on f_L, albeit in a more restricted kinematic domain.