arXiv Analytics

Sign in

arXiv:1303.3457 [math.GR]AbstractReferencesReviewsResources

Groups whose prime graphs have no triangles

Hung P. Tong-Viet

Published 2013-03-14Version 1

Let G be a finite group and let cd(G) be the set of all complex irreducible character degrees of G Let \rho(G) be the set of all primes which divide some character degree of G. The prime graph \Delta(G) attached to G is a graph whose vertex set is \rho(G) and there is an edge between two distinct primes u and v if and only if the product uv divides some character degree of G. In this paper, we show that if G is a finite group whose prime graph \Delta(G) has no triangles, then \Delta(G) has at most 5 vertices. We also obtain a classification of all finite graphs with 5 vertices and having no triangles which can occur as prime graphs of some finite groups. Finally, we show that the prime graph of a finite group can never be a cycle nor a tree with at least 5 vertices.

Comments: 13 pages
Journal: Journal of Algebra 378 (2013), 196-206
Categories: math.GR, math.CO, math.RT
Subjects: 20C15, 05C25
Related articles: Most relevant | Search more
arXiv:1307.2175 [math.GR] (Published 2013-07-05, updated 2013-08-23)
Finite groups whose prime graphs are regular
arXiv:math/0603239 [math.GR] (Published 2006-03-10, updated 2008-08-28)
Groups with a Character of Large Degree
arXiv:1311.1383 [math.GR] (Published 2013-11-06, updated 2014-12-17)
Positions of characters in finite groups and the Taketa inequality