arXiv Analytics

Sign in

arXiv:1210.0665 [cond-mat.mes-hall]AbstractReferencesReviewsResources

Entanglement of nanoelectromechanical oscillators by Cooper-pair tunneling

Stefan Walter, Jan Carl Budich, Jens Eisert, Björn Trauzettel

Published 2012-10-02, updated 2013-08-19Version 3

We demonstrate that entanglement of two macroscopic nanoelectromechanical resonators -- coupled to each other via a common detector, a tunnel junction -- can be generated by running a current through the device. We introduce a setup that overcomes generic limitations of proposals suggesting to entangle systems via a shared bath. At the heart of the proposal is an Andreev entangler setup, representing an experimentally feasible way of entangling two nanomechanical oscillators. Instead of relying on the coherence of a (fermionic) bath, in the Andreev entangler setup, a split Cooper-pair that coherently tunnels to each oscillator mediates their coupling and thereby induces entanglement between them. Since entanglement is in each instance generated by Markovian and non-Markovian noisy open system dynamics in an out-of-equilibrium situation, we argue that the present scheme also opens up perspectives to observe dissipation-driven entanglement in a condensed-matter system.

Related articles: Most relevant | Search more
arXiv:1409.6521 [cond-mat.mes-hall] (Published 2014-09-23)
Influence of Hyperfine Interaction on the Entanglement of Photons Generated by Biexciton Recombination
arXiv:cond-mat/0206396 (Published 2002-06-21)
Entanglement of solid-state qubits by measurement
arXiv:1609.04732 [cond-mat.mes-hall] (Published 2016-09-15)
Entanglement of two qubits mediated by a localized surface plasmon