arXiv:1204.2424 [hep-ph]AbstractReferencesReviewsResources
The Polyakov loop and the hadron resonance gas model
E. Megias, E. Ruiz Arriola, L. L. Salcedo
Published 2012-04-11, updated 2012-06-12Version 2
The Polyakov loop has been used repeatedly as an order parameter in the deconfinement phase transition in QCD. We argue that, in the confined phase, its expectation value can be represented in terms of hadronic states, similarly to the hadron resonance gas model for the pressure. Specifically, L(T) \approx 1/2\sum_\alpha g_\alpha \,e^(-\Delta_\alpha/T), where g_\alpha are the degeneracies and \Delta_\alpha are the masses of hadrons with exactly one heavy quark (the mass of the heavy quark itself being subtracted). We show that this approximate sum rule gives a fair description of available lattice data with N_f=2+1 for temperatures in the range 150MeV<T<190MeV with conventional meson and baryon states from two different models. For temperatures below 150MeV different lattice results disagree. One set of data can be described if exotic hadrons are present in the QCD spectrum while other sets do not require such states.