arXiv:1108.5051 [math.AG]AbstractReferencesReviewsResources
A note on degenerations of del Pezzo surfaces
Published 2011-08-25, updated 2014-09-04Version 2
We prove that for a Q-Gorenstein degeneration $X$ of del Pezzo surfaces, the number of non-Du Val singularities is at most $\rho(X)+2$. Degenerations with $\rho(X)+2$ and $\rho(X)+1$ non-Du Val points are investigated.
Comments: 16 pages, LaTeX, to appear at Annales de l'Institut Fourier
Categories: math.AG
Related articles: Most relevant | Search more
arXiv:math/0509529 [math.AG] (Published 2005-09-22)
Degenerations of del Pezzo surfaces I
Stable pair, tropical, and log canonical compact moduli of del Pezzo surfaces
arXiv:1411.2397 [math.AG] (Published 2014-11-10)
Del Pezzo surfaces of degree four violating the Hasse principle are Zariski dense in the moduli scheme